练习人脸跟踪算法的数据貌似由以下四有个别组成,  练习人脸跟踪算法的数目貌似由以下四局地组成

面向对象设计

  与人脸检查和测试和人脸识别一样,人脸跟踪也由两部分组成:数据和算法。算法通过事先储存(即离线)的多少来演练模型,然后对新来的(即在线)数据进行某类操作。由此,采纳面向对象设计是不利的抉择。

  在
opencv 2.x 版本中,可便宜引入
XML/YAML 文件存款和储蓄类型,对算法来讲,会大大简化组织离线数据职责。上边通过四个假象类来显示这些功效

  

  • 自定义类
    foo

     1 // foo.h
     2 /*
     3     在下面的代码中,定义了一个序列化函数,可对 I/O 函数 read 和 write 实现序列化。
     4     FileStorage 类支持两种能被序列化的数据结构类型。
     5     为了简单起见,本章所有类将采用映射,其中每个用于存储的变量都会创建一个 FileNode::MAP 类型的 FileNode 对象。
     6     这需要分配给变量中的每个元素唯一键。为了保持一致性,将变量名作为标签
     7 */
     8 
     9 #include <opencv2/opencv.hpp>
    10 #include <iostream>
    11 using namespace cv;
    12 using namespace std;
    13 
    14 class foo {
    15 public:
    16     int a, b;        
    17     void write(FileStorage &fs) const {            // 序列化存储自定义数据类型
    18         assert(fs.isOpened());
    19         fs << "{" << "a" << a << "b" << b << "}";        // 创建 FileNode::MAP 类型的对象
    20     }
    21     void read(const FileNode& node) {            // 读取数据
    22         assert(node.type() == FileNode::MAP);
    23         node["a"] >> a;    node["b"] >> b;
    24     }
    25 };
    
  • 为了使
    FileStorage 类的体系化能健康干活,还亟需定义write,
    read函数

     1 template<class T>
     2 void 
     3 write(FileStorage& fs, 
     4       const string&, 
     5       const T& x)
     6 {
     7   x.write(fs);
     8 }
     9 //==============================================================================
    10 template<class T>
    11 void 
    12 read(const FileNode& node, 
    13      T& x,
    14      const T& d)
    15 {
    16   if(node.empty())x = d; else x.read(node);
    17 }
    

     

 

  • 为了让保存和加载采取了种类化的用户自定义类变得不难,选拔模块化函数定义了load_ft,save_ft函数

     1 template <class T> 
     2 T load_ft(const char* fname){
     3   T x; FileStorage f(fname,FileStorage::READ);
     4   f["ft object"] >> x; f.release(); return x;    // 定义与对象关联的标签都为 ft object
     5 }
     6 //==============================================================================
     7 template<class T>
     8 void save_ft(const char* fname,const T& x){
     9   FileStorage f(fname,FileStorage::WRITE);
    10   f << "ft object" << x; f.release();
    11 }
    
  • 将上述定义在
    ft.hpp 中
    亿万先生官方网站: 1亿万先生官方网站: 2

     1 /*
     2     ft.hpp
     3     用于加载、保存对象数据
     4 */
     5 
     6 #ifndef _FT_FT_HPP_
     7 #define _FT_FT_HPP_
     8 #include <opencv2/opencv.hpp> 
     9 //==============================================================================
    10 // 为了让保存和加载采用了序列化的用户自定义类变得容易,采用模块化函数定义了load_ft,save_ft函数
    11 template <class T> 
    12 T load_ft(const char* fname){
    13   T x; FileStorage f(fname,FileStorage::READ);
    14   f["ft object"] >> x; f.release(); return x;    // 定义与对象关联的标签都为 ft object
    15 }
    16 //==============================================================================
    17 template<class T>
    18 void save_ft(const char* fname,const T& x){
    19   FileStorage f(fname,FileStorage::WRITE);
    20   f << "ft object" << x; f.release();
    21 }
    22 //==============================================================================
    23 // 为了使 FileStorage 类的序列化能正常工作,还需要定义write, read函数
    24 template<class T>
    25 void 
    26 write(FileStorage& fs, 
    27       const string&, 
    28       const T& x)
    29 {
    30   x.write(fs);
    31 }
    32 //==============================================================================
    33 template<class T>
    34 void 
    35 read(const FileNode& node, 
    36      T& x,
    37      const T& d)
    38 {
    39   if(node.empty())x = d; else x.read(node);
    40 }
    41 //==============================================================================
    42 #endif
    

    ft.hpp

  • 主函数,有四个标题,储存到
    xml 文件再而三报错,而 yaml 文件可以健康存取

     1 /*
     2     main.cpp
     3     测试 opencv 文件储存
     4 */
     5 
     6 #include "opencv_hotshots/ft/ft.hpp"
     7 #include "foo.h"
     8 
     9 int main() {
    10     foo A;                // 初始化自定义对象 A
    11     A.a = 1; A.b = 2;
    12     save_ft<foo>("foo.yaml", A);    // 将自定义对象存到 foo.yaml
    13     foo B = load_ft<foo>("foo.yaml");    // 读取对象
    14     cout << B.a << "," << B.b << endl;
    15 
    16     system("pause");
    17     return 0;
    18 }
    
  • 程序运营结果

       
        亿万先生官方网站: 3               
  亿万先生官方网站: 4

 

 

 

面向对象设计

  与人脸检查和测试和人脸识别一样,人脸跟踪也由两部分构成:数据和算法。算法通过事先储存(即离线)的数码来磨炼模型,然后对新来的(即在线)数据进行某类操作。因而,采取面向对象设计是天经地义的选项。

  在
opencv 2.x 版本中,可惠及引入
XML/YAML 文件存储类型,对算法来讲,会大大简化组织离线数据任务。上边通过3个假象类来显示那些意义

  

  • 自定义类
    foo

     1 // foo.h
     2 /*
     3     在下面的代码中,定义了一个序列化函数,可对 I/O 函数 read 和 write 实现序列化。
     4     FileStorage 类支持两种能被序列化的数据结构类型。
     5     为了简单起见,本章所有类将采用映射,其中每个用于存储的变量都会创建一个 FileNode::MAP 类型的 FileNode 对象。
     6     这需要分配给变量中的每个元素唯一键。为了保持一致性,将变量名作为标签
     7 */
     8 
     9 #include <opencv2/opencv.hpp>
    10 #include <iostream>
    11 using namespace cv;
    12 using namespace std;
    13 
    14 class foo {
    15 public:
    16     int a, b;        
    17     void write(FileStorage &fs) const {            // 序列化存储自定义数据类型
    18         assert(fs.isOpened());
    19         fs << "{" << "a" << a << "b" << b << "}";        // 创建 FileNode::MAP 类型的对象
    20     }
    21     void read(const FileNode& node) {            // 读取数据
    22         assert(node.type() == FileNode::MAP);
    23         node["a"] >> a;    node["b"] >> b;
    24     }
    25 };
    
  • 为了使
    FileStorage 类的体系化能平常工作,还须求定义write,
    read函数

     1 template<class T>
     2 void 
     3 write(FileStorage& fs, 
     4       const string&, 
     5       const T& x)
     6 {
     7   x.write(fs);
     8 }
     9 //==============================================================================
    10 template<class T>
    11 void 
    12 read(const FileNode& node, 
    13      T& x,
    14      const T& d)
    15 {
    16   if(node.empty())x = d; else x.read(node);
    17 }
    

     

 

  • 为了让保存和加载采取了体系化的用户自定义类变得不难,接纳模块化函数定义了load_ft,save_ft函数

     1 template <class T> 
     2 T load_ft(const char* fname){
     3   T x; FileStorage f(fname,FileStorage::READ);
     4   f["ft object"] >> x; f.release(); return x;    // 定义与对象关联的标签都为 ft object
     5 }
     6 //==============================================================================
     7 template<class T>
     8 void save_ft(const char* fname,const T& x){
     9   FileStorage f(fname,FileStorage::WRITE);
    10   f << "ft object" << x; f.release();
    11 }
    
  • 将上述定义在
    ft.hpp 中
    亿万先生官方网站: 5亿万先生官方网站: 6

     1 /*
     2     ft.hpp
     3     用于加载、保存对象数据
     4 */
     5 
     6 #ifndef _FT_FT_HPP_
     7 #define _FT_FT_HPP_
     8 #include <opencv2/opencv.hpp> 
     9 //==============================================================================
    10 // 为了让保存和加载采用了序列化的用户自定义类变得容易,采用模块化函数定义了load_ft,save_ft函数
    11 template <class T> 
    12 T load_ft(const char* fname){
    13   T x; FileStorage f(fname,FileStorage::READ);
    14   f["ft object"] >> x; f.release(); return x;    // 定义与对象关联的标签都为 ft object
    15 }
    16 //==============================================================================
    17 template<class T>
    18 void save_ft(const char* fname,const T& x){
    19   FileStorage f(fname,FileStorage::WRITE);
    20   f << "ft object" << x; f.release();
    21 }
    22 //==============================================================================
    23 // 为了使 FileStorage 类的序列化能正常工作,还需要定义write, read函数
    24 template<class T>
    25 void 
    26 write(FileStorage& fs, 
    27       const string&, 
    28       const T& x)
    29 {
    30   x.write(fs);
    31 }
    32 //==============================================================================
    33 template<class T>
    34 void 
    35 read(const FileNode& node, 
    36      T& x,
    37      const T& d)
    38 {
    39   if(node.empty())x = d; else x.read(node);
    40 }
    41 //==============================================================================
    42 #endif
    

    ft.hpp

  • 主函数,有2个难题,储存到
    xml 文件再而三报错,而 yaml 文件能够健康存取

     1 /*
     2     main.cpp
     3     测试 opencv 文件储存
     4 */
     5 
     6 #include "opencv_hotshots/ft/ft.hpp"
     7 #include "foo.h"
     8 
     9 int main() {
    10     foo A;                // 初始化自定义对象 A
    11     A.a = 1; A.b = 2;
    12     save_ft<foo>("foo.yaml", A);    // 将自定义对象存到 foo.yaml
    13     foo B = load_ft<foo>("foo.yaml");    // 读取对象
    14     cout << B.a << "," << B.b << endl;
    15 
    16     system("pause");
    17     return 0;
    18 }
    
  • 程序运维结果

       
        亿万先生官方网站: 7               
  亿万先生官方网站: 8

 

 

 

数据搜集:图像和摄像标注

  现代人脸跟踪技术大约统统是数额驱动,即用来检查和测试图像中面部特征地方的算法依靠面部特征的外观模型和几何信赖性,该正视性来自样本集中人脸间的相对地点。样本集越大,算法就更有着鲁棒性,因为人脸所展现出的变化范围就更明亮。因而,创设人脸跟踪算法的首先步是制造用于举行图像/录制的标注工具,用户可用此工具来内定在种种样本图中想要的颜面特征地方。

  1. ### 陶冶数据类型

  锻炼人脸跟踪算法的数额一般由以下四部分构成:

    • 图像:这一部分是富含全部人脸图像(图像或录像帧)的会见
    • 标明:这一部分行使手工业方法标明每幅图像中被跟踪的人脸特征的周旋地点
    • 对称性索引:那有些对定义了两边对称特征的面部特征点都封存了一个数码,以便用来镜像磨炼图像,可有效地让教练集大小扩大一倍
    • 连通性索引:那部分是一组标注的目录对,它们定义了脸部特征的语义解释。连通性对可视化跟踪结果很有用

  那多少个零件的可视化情况呈现在下图中,从左到右依次是原有图像、脸部特征标注、颜色编码的双面对称点、镜像图像与相应标注、面部特征的连通性。

   
  亿万先生官方网站: 9

 

  为了方便管理这种数据,需兑现全体读写效率的类。本章将运用在
ft_data.hpp 头文件中定义的
ft_data 类,它是按面部跟踪数据的特色专门规划的。全部因素都定义成类的国有成员变量,如下所示

1 class ft_data{                             //人脸跟踪数据
2 public:
3   vector<int> symmetry;                    // 人脸特征点的索引,维数与用户定义的特征点数一样
4   vector<Vec2i> connections;               // 定义一对连通的面部特征
5   vector<string> imnames;                  // 存储每个图像文件名
6   vector<vector<Point2f> > points;         // 存储特征点的位置
7   ...
8 }

 

 

  ft_data 类达成了累累拜访数据的有效方法。为了访问数据集的图像,可用
get_image 函数加载图像。使用该函数需点名加载图像的索引 idx
,以及是或不是将图像以 y 轴做镜像。该函数完毕如下:

 1 Mat
 2 ft_data::
 3 get_image(const int idx,    // 图像索引
 4       const int flag)        // 0=gray,1=gray+flip,2=rgb,3=rgb+flip
 5 {
 6   if((idx < 0) || (idx >= (int)imnames.size()))return Mat();
 7   Mat img,im;
 8   if(flag < 2)img = imread(imnames[idx],0);        // gray
 9   else img = imread(imnames[idx],1);            // rgb
10   if(flag % 2 != 0)flip(img,im,1);                // 以 y 轴做镜像
11   else im = img;
12   return im;
13 }

 

 

  为了通过点名的目录来获取相应图像的八个点集,可利用
get_points 函数因而镜像索引来得到三个依据浮点的坐标向量

 1 vector<Point2f>
 2 ft_data::
 3 get_points(const int idx,        // 相应图像的索引
 4        const bool flipped)        // 是否以 y 轴做镜像
 5 {
 6   if((idx < 0) || (idx >= (int)imnames.size()))return vector<Point2f>();
 7   vector<Point2f> p = points[idx];
 8   if(flipped){        // 以 y 轴做镜像
 9     Mat im = this->get_image(idx,0);    // im 用来获取图像的宽度
10     int n = p.size(); vector<Point2f> q(n);
11     for(int i = 0; i < n; i++){            // 沿竖直方向翻转    
12       q[i].x = im.cols-1-p[symmetry[i]].x;
13       q[i].y = p[symmetry[i]].y;
14     }return q;
15   }else return p;
16 }

 

 

  ft_data 类还落到实处了一个函数
rm_incomplete_samples,该函数删除集合中没有开展对应标注的样本,具体达成如下:

 1 void
 2 ft_data::
 3 rm_incomplete_samples()        // 删除集合中没有进行相应标注的样本
 4 {
 5   int n = points[0].size(),N = points.size();
 6   // 找出标注数最多的样本,作为标准样本
 7   for(int i = 1; i < N; i++)n = max(n,int(points[i].size()));    
 8   for(int i = 0; i < int(points.size()); i++){
 9     if(int(points[i].size()) != n){        // 样本标注点的数量小于标准样本标注点数,从样本中删除
10       points.erase(points.begin()+i); imnames.erase(imnames.begin()+i); i--;
11     }else{
12       int j = 0;
13       for(; j < n; j++){
14         // 若点的(x,y)存在小于0,则可认为它在相应的图像中不存在
15         if((points[i][j].x <= 0) || (points[i][j].y <= 0))break;
16       }
17       if(j < n){    // 从样本中删除
18     points.erase(points.begin()+i); imnames.erase(imnames.begin()+i); i--;
19       }
20     }
21   }
22 }

 

 

  ft_data 类还达成了函数 read 和 write 的种类化,那样就足以方便地蕴藏和加载该类。

亿万先生官方网站: 10亿万先生官方网站: 11

 1 void 
 2 ft_data::
 3 write(FileStorage &fs) const
 4 {
 5   assert(fs.isOpened()); 
 6   fs << "{";
 7   fs << "n_connections" << (int)connections.size();        // 面部特征的语义解释
 8   for(int i = 0; i < int(connections.size()); i++){
 9     char str[256]; const char* ss;
10     sprintf(str,"connections %d 0",i); ss = str; fs << ss << connections[i][0];
11     sprintf(str,"connections %d 1",i); ss = str; fs << ss << connections[i][1];
12   }
13   fs << "n_symmetry" << (int)symmetry.size();            // 特征点的索引
14   for(int i = 0; i < int(symmetry.size()); i++){
15     char str[256]; const char* ss;
16     sprintf(str,"symmetry %d",i); ss = str; fs << ss << symmetry[i];
17   }
18   fs << "n_images" << (int)imnames.size();                // 图像绝对路径
19   for(int i = 0; i < int(imnames.size()); i++){
20     char str[256]; const char* ss;
21     sprintf(str,"image %d",i); ss = str; fs << ss << imnames[i];
22   }
23   int n = points[0].size(),N = points.size();            // 描述人脸特征点的结构
24   Mat X(2*n,N,CV_32F); X = -1;
25   for(int i = 0; i < N; i++){
26     if(int(points[i].size()) == n){
27       for(int j = 0; j < n; j++){
28     X.at<float>(2*j  ,i) = points[i][j].x;
29     X.at<float>(2*j+1,i) = points[i][j].y;
30       }
31     }
32   }
33   fs << "shapes" << X << "}";
34 }
35 //==============================================================================
36 void
37 ft_data::
38 read(const FileNode& node)
39 {
40   assert(node.type() == FileNode::MAP);
41   int n; node["n_connections"] >> n; connections.resize(n);
42   for(int i = 0; i < n; i++){
43     char str[256]; const char* ss;
44     sprintf(str,"connections %d 0",i); ss = str; node[ss] >> connections[i][0];
45     sprintf(str,"connections %d 1",i); ss = str; node[ss] >> connections[i][1];
46   }
47   node["n_symmetry"] >> n; symmetry.resize(n);
48   for(int i = 0; i < n; i++){
49     char str[256]; const char* ss;
50     sprintf(str,"symmetry %d",i); ss = str; node[ss] >> symmetry[i];
51   }
52   node["n_images"] >> n; imnames.resize(n);
53   for(int i = 0; i < n; i++){
54     char str[256]; const char* ss;
55     sprintf(str,"image %d",i); ss = str; node[ss] >> imnames[i];
56   }
57   Mat X; node["shapes"] >> X; int N = X.cols; n = X.rows/2; 
58   points.resize(N);
59   for(int i = 0; i < N; i++){
60     points[i].clear();
61     for(int j = 0; j < n; j++){
62       Point2f p(X.at<float>(2*j,i),X.at<float>(2*j+1,i));
63       if((p.x >= 0) && (p.y >= 0))points[i].push_back(p);
64     }
65   }
66 }

read write

 

 

 

  为对数据集进行可视化操作,
ft_data 达成了广大用以绘图的函数。

亿万先生官方网站: 12亿万先生官方网站: 13

  1 void
  2 ft_data::
  3 draw_points(Mat &im,
  4         const int idx,
  5         const bool flipped,
  6         const Scalar color,
  7         const vector<int> &pts)
  8 {
  9   if((idx < 0) || (idx >= (int)imnames.size()))return;
 10   int n = points[idx].size();
 11   if(pts.size() == 0){
 12     for(int i = 0; i < n; i++){
 13       if(!flipped)circle(im,points[idx][i],1,color,2,CV_AA);
 14       else{
 15     Point2f p(im.cols - 1 - points[idx][symmetry[i]].x,
 16           points[idx][symmetry[i]].y);
 17     circle(im,p,1,color,2,CV_AA);
 18       }
 19     }
 20   }else{
 21     int m = pts.size();
 22     for(int j = 0; j < m; j++){
 23       int i = pts[j]; if((i < 0) || (i >= n))continue;
 24       if(!flipped)circle(im,points[idx][i],1,color,2,CV_AA);
 25       else{
 26     Point2f p(im.cols - 1 - points[idx][symmetry[i]].x,
 27           points[idx][symmetry[i]].y);
 28     circle(im,p,1,color,2,CV_AA);
 29       }
 30     }
 31   }
 32 }
 33 //==============================================================================
 34 void
 35 ft_data::
 36 draw_sym(Mat &im,
 37      const int idx,
 38      const bool flipped,
 39      const vector<int> &pts)
 40 {
 41   if((idx < 0) || (idx >= (int)imnames.size()))return;
 42   int n = points[idx].size();
 43   RNG rn; vector<Scalar> colors(n); 
 44   for(int i = 0; i < n; i++)colors[i] = Scalar::all(0.0);
 45   for(int i = 0; i < n; i++){
 46     if(colors[i] == Scalar::all(0.0)){
 47       colors[i] = Scalar(rn.uniform(0,255),rn.uniform(0,255),rn.uniform(0,255));
 48       colors[symmetry[i]] = colors[i];
 49     }
 50   }
 51   vector<Point2f> p = this->get_points(idx,flipped); 
 52   if(pts.size() == 0){
 53     for(int i = 0; i < n; i++){circle(im,p[i],1,colors[i],2,CV_AA);}
 54   }else{
 55     int m = pts.size();
 56     for(int j = 0; j < m; j++){
 57       int i = pts[j]; if((i < 0) || (i >= n))continue;
 58       circle(im,p[i],1,colors[i],2,CV_AA);
 59     }
 60   }
 61 }
 62 //==============================================================================
 63 void
 64 ft_data::
 65 draw_connect(Mat &im,
 66          const int idx,
 67          const bool flipped,
 68          const Scalar color,
 69          const vector<int> &con)
 70 {
 71   if((idx < 0) || (idx >= (int)imnames.size()))return;
 72   int n = connections.size();
 73   if(con.size() == 0){    
 74     for(int i = 0; i < n; i++){
 75       int j = connections[i][0],k = connections[i][1];
 76       if(!flipped)line(im,points[idx][j],points[idx][k],color,1);
 77       else{
 78     Point2f p(im.cols - 1 - points[idx][symmetry[j]].x,
 79           points[idx][symmetry[j]].y);
 80     Point2f q(im.cols - 1 - points[idx][symmetry[k]].x,
 81           points[idx][symmetry[k]].y);
 82     line(im,p,q,color,1);
 83       }
 84     }
 85   }else{
 86     int m = con.size();
 87     for(int j = 0; j < m; j++){
 88       int i = con[j]; if((i < 0) || (i >= n))continue;
 89       int k = connections[i][0],l = connections[i][1];
 90       if(!flipped)line(im,points[idx][k],points[idx][l],color,1);
 91       else{
 92     Point2f p(im.cols - 1 - points[idx][symmetry[k]].x,
 93           points[idx][symmetry[k]].y);
 94     Point2f q(im.cols - 1 - points[idx][symmetry[l]].x,
 95           points[idx][symmetry[l]].y);
 96     line(im,p,q,color,1);
 97       }
 98     }
 99   }
100 }

绘图函数

 

 

 

数码搜集:图像和录像标注

  现代人脸跟踪技术大约全盘是数额驱动,即用来检查和测试图像中面部特征地方的算法依靠面部特征的外观模型和几何注重性,该重视性来自样本集中人脸间的周旋地方。样本集越大,算法就更享有鲁棒性,因为人脸所显现出的变更范围就更清楚。由此,创设人脸跟踪算法的第1步是创设用于进行图像/录制的标注工具,用户可用此工具来钦赐在种种样本图中想要的面庞特征地点。

  1. ### 练习数据类型

  磨练人脸跟踪算法的数码貌似由以下四有些组成:

    • 图像:那有的是含有全体人脸图像(图像或摄像帧)的汇集
    • 标明:那有的采取手工业方法标明每幅图像中被盯梢的人脸特征的相对地点
    • 对称性索引:那部分对定义了两岸对称特征的颜面特征点都保留了几个编号,以便用来镜像练习图像,可使得地让教练集大小增添一倍
    • 连通性索引:那部分是一组标注的目录对,它们定义了面部特征的语义解释。连通性对可视化跟踪结果很有用

  那三个零部件的可视化情况展现在下图中,从左到右依次是固有图像、脸部特征标注、颜色编码的相互对称点、镜像图像与相应标注、面部特征的连通性。

   
  亿万先生官方网站: 14

 

  为了方便管理那种多少,需兑现全部读写功用的类。本章将动用在
ft_data.hpp 头文件中定义的
ft_data 类,它是按面部跟踪数据的风味专门布置的。全部因素都定义成类的公有成员变量,如下所示

1 class ft_data{                             //人脸跟踪数据
2 public:
3   vector<int> symmetry;                    // 人脸特征点的索引,维数与用户定义的特征点数一样
4   vector<Vec2i> connections;               // 定义一对连通的面部特征
5   vector<string> imnames;                  // 存储每个图像文件名
6   vector<vector<Point2f> > points;         // 存储特征点的位置
7   ...
8 }

 

 

  ft_data 类完结了广大做客数据的有用方法。为了访问数据集的图像,可用
get_image 函数加载图像。使用该函数需点名加载图像的索引 idx
,以及是不是将图像以 y 轴做镜像。该函数完成如下:

 1 Mat
 2 ft_data::
 3 get_image(const int idx,    // 图像索引
 4       const int flag)        // 0=gray,1=gray+flip,2=rgb,3=rgb+flip
 5 {
 6   if((idx < 0) || (idx >= (int)imnames.size()))return Mat();
 7   Mat img,im;
 8   if(flag < 2)img = imread(imnames[idx],0);        // gray
 9   else img = imread(imnames[idx],1);            // rgb
10   if(flag % 2 != 0)flip(img,im,1);                // 以 y 轴做镜像
11   else im = img;
12   return im;
13 }

 

 

  为了通过点名的目录来收获相应图像的一个点集,可应用
get_points 函数透过镜像索引来获得1个依照浮点的坐标向量

 1 vector<Point2f>
 2 ft_data::
 3 get_points(const int idx,        // 相应图像的索引
 4        const bool flipped)        // 是否以 y 轴做镜像
 5 {
 6   if((idx < 0) || (idx >= (int)imnames.size()))return vector<Point2f>();
 7   vector<Point2f> p = points[idx];
 8   if(flipped){        // 以 y 轴做镜像
 9     Mat im = this->get_image(idx,0);    // im 用来获取图像的宽度
10     int n = p.size(); vector<Point2f> q(n);
11     for(int i = 0; i < n; i++){            // 沿竖直方向翻转    
12       q[i].x = im.cols-1-p[symmetry[i]].x;
13       q[i].y = p[symmetry[i]].y;
14     }return q;
15   }else return p;
16 }

 

 

  ft_data 类还落到实处了2个函数
rm_incomplete_samples,该函数删除集合中从未举办相应标注的样本,具体达成如下:

 1 void
 2 ft_data::
 3 rm_incomplete_samples()        // 删除集合中没有进行相应标注的样本
 4 {
 5   int n = points[0].size(),N = points.size();
 6   // 找出标注数最多的样本,作为标准样本
 7   for(int i = 1; i < N; i++)n = max(n,int(points[i].size()));    
 8   for(int i = 0; i < int(points.size()); i++){
 9     if(int(points[i].size()) != n){        // 样本标注点的数量小于标准样本标注点数,从样本中删除
10       points.erase(points.begin()+i); imnames.erase(imnames.begin()+i); i--;
11     }else{
12       int j = 0;
13       for(; j < n; j++){
14         // 若点的(x,y)存在小于0,则可认为它在相应的图像中不存在
15         if((points[i][j].x <= 0) || (points[i][j].y <= 0))break;
16       }
17       if(j < n){    // 从样本中删除
18     points.erase(points.begin()+i); imnames.erase(imnames.begin()+i); i--;
19       }
20     }
21   }
22 }

 

 

  ft_data 类还落到实处了函数 read 和 write 的系列化,那样就足以一本万利地囤积和加载该类。

亿万先生官方网站: 15亿万先生官方网站: 16

 1 void 
 2 ft_data::
 3 write(FileStorage &fs) const
 4 {
 5   assert(fs.isOpened()); 
 6   fs << "{";
 7   fs << "n_connections" << (int)connections.size();        // 面部特征的语义解释
 8   for(int i = 0; i < int(connections.size()); i++){
 9     char str[256]; const char* ss;
10     sprintf(str,"connections %d 0",i); ss = str; fs << ss << connections[i][0];
11     sprintf(str,"connections %d 1",i); ss = str; fs << ss << connections[i][1];
12   }
13   fs << "n_symmetry" << (int)symmetry.size();            // 特征点的索引
14   for(int i = 0; i < int(symmetry.size()); i++){
15     char str[256]; const char* ss;
16     sprintf(str,"symmetry %d",i); ss = str; fs << ss << symmetry[i];
17   }
18   fs << "n_images" << (int)imnames.size();                // 图像绝对路径
19   for(int i = 0; i < int(imnames.size()); i++){
20     char str[256]; const char* ss;
21     sprintf(str,"image %d",i); ss = str; fs << ss << imnames[i];
22   }
23   int n = points[0].size(),N = points.size();            // 描述人脸特征点的结构
24   Mat X(2*n,N,CV_32F); X = -1;
25   for(int i = 0; i < N; i++){
26     if(int(points[i].size()) == n){
27       for(int j = 0; j < n; j++){
28     X.at<float>(2*j  ,i) = points[i][j].x;
29     X.at<float>(2*j+1,i) = points[i][j].y;
30       }
31     }
32   }
33   fs << "shapes" << X << "}";
34 }
35 //==============================================================================
36 void
37 ft_data::
38 read(const FileNode& node)
39 {
40   assert(node.type() == FileNode::MAP);
41   int n; node["n_connections"] >> n; connections.resize(n);
42   for(int i = 0; i < n; i++){
43     char str[256]; const char* ss;
44     sprintf(str,"connections %d 0",i); ss = str; node[ss] >> connections[i][0];
45     sprintf(str,"connections %d 1",i); ss = str; node[ss] >> connections[i][1];
46   }
47   node["n_symmetry"] >> n; symmetry.resize(n);
48   for(int i = 0; i < n; i++){
49     char str[256]; const char* ss;
50     sprintf(str,"symmetry %d",i); ss = str; node[ss] >> symmetry[i];
51   }
52   node["n_images"] >> n; imnames.resize(n);
53   for(int i = 0; i < n; i++){
54     char str[256]; const char* ss;
55     sprintf(str,"image %d",i); ss = str; node[ss] >> imnames[i];
56   }
57   Mat X; node["shapes"] >> X; int N = X.cols; n = X.rows/2; 
58   points.resize(N);
59   for(int i = 0; i < N; i++){
60     points[i].clear();
61     for(int j = 0; j < n; j++){
62       Point2f p(X.at<float>(2*j,i),X.at<float>(2*j+1,i));
63       if((p.x >= 0) && (p.y >= 0))points[i].push_back(p);
64     }
65   }
66 }

read write

 

 

 

  为对数据集进行可视化操作,
ft_data 达成了诸多用以绘图的函数。

亿万先生官方网站: 17亿万先生官方网站: 18

  1 void
  2 ft_data::
  3 draw_points(Mat &im,
  4         const int idx,
  5         const bool flipped,
  6         const Scalar color,
  7         const vector<int> &pts)
  8 {
  9   if((idx < 0) || (idx >= (int)imnames.size()))return;
 10   int n = points[idx].size();
 11   if(pts.size() == 0){
 12     for(int i = 0; i < n; i++){
 13       if(!flipped)circle(im,points[idx][i],1,color,2,CV_AA);
 14       else{
 15     Point2f p(im.cols - 1 - points[idx][symmetry[i]].x,
 16           points[idx][symmetry[i]].y);
 17     circle(im,p,1,color,2,CV_AA);
 18       }
 19     }
 20   }else{
 21     int m = pts.size();
 22     for(int j = 0; j < m; j++){
 23       int i = pts[j]; if((i < 0) || (i >= n))continue;
 24       if(!flipped)circle(im,points[idx][i],1,color,2,CV_AA);
 25       else{
 26     Point2f p(im.cols - 1 - points[idx][symmetry[i]].x,
 27           points[idx][symmetry[i]].y);
 28     circle(im,p,1,color,2,CV_AA);
 29       }
 30     }
 31   }
 32 }
 33 //==============================================================================
 34 void
 35 ft_data::
 36 draw_sym(Mat &im,
 37      const int idx,
 38      const bool flipped,
 39      const vector<int> &pts)
 40 {
 41   if((idx < 0) || (idx >= (int)imnames.size()))return;
 42   int n = points[idx].size();
 43   RNG rn; vector<Scalar> colors(n); 
 44   for(int i = 0; i < n; i++)colors[i] = Scalar::all(0.0);
 45   for(int i = 0; i < n; i++){
 46     if(colors[i] == Scalar::all(0.0)){
 47       colors[i] = Scalar(rn.uniform(0,255),rn.uniform(0,255),rn.uniform(0,255));
 48       colors[symmetry[i]] = colors[i];
 49     }
 50   }
 51   vector<Point2f> p = this->get_points(idx,flipped); 
 52   if(pts.size() == 0){
 53     for(int i = 0; i < n; i++){circle(im,p[i],1,colors[i],2,CV_AA);}
 54   }else{
 55     int m = pts.size();
 56     for(int j = 0; j < m; j++){
 57       int i = pts[j]; if((i < 0) || (i >= n))continue;
 58       circle(im,p[i],1,colors[i],2,CV_AA);
 59     }
 60   }
 61 }
 62 //==============================================================================
 63 void
 64 ft_data::
 65 draw_connect(Mat &im,
 66          const int idx,
 67          const bool flipped,
 68          const Scalar color,
 69          const vector<int> &con)
 70 {
 71   if((idx < 0) || (idx >= (int)imnames.size()))return;
 72   int n = connections.size();
 73   if(con.size() == 0){    
 74     for(int i = 0; i < n; i++){
 75       int j = connections[i][0],k = connections[i][1];
 76       if(!flipped)line(im,points[idx][j],points[idx][k],color,1);
 77       else{
 78     Point2f p(im.cols - 1 - points[idx][symmetry[j]].x,
 79           points[idx][symmetry[j]].y);
 80     Point2f q(im.cols - 1 - points[idx][symmetry[k]].x,
 81           points[idx][symmetry[k]].y);
 82     line(im,p,q,color,1);
 83       }
 84     }
 85   }else{
 86     int m = con.size();
 87     for(int j = 0; j < m; j++){
 88       int i = con[j]; if((i < 0) || (i >= n))continue;
 89       int k = connections[i][0],l = connections[i][1];
 90       if(!flipped)line(im,points[idx][k],points[idx][l],color,1);
 91       else{
 92     Point2f p(im.cols - 1 - points[idx][symmetry[k]].x,
 93           points[idx][symmetry[k]].y);
 94     Point2f q(im.cols - 1 - points[idx][symmetry[l]].x,
 95           points[idx][symmetry[l]].y);
 96     line(im,p,q,color,1);
 97       }
 98     }
 99   }
100 }

绘图函数

 

 

 

  2. 标注工具

   为了使生成的标注能被本章中的代码应用,可在 annotate.cpp 文件中找到二个宗旨的标注工具。该工具将3个视屏流作为输入,那几个摄像流能够来自文件或相机、使用该工具的进度有如下多少个步骤:

  • 破获图像:第③步是将图像流展现在显示器上,用户按下
    S 键就可挑选图像进行标注。

    • 驷不比舌代码如下:

       1 //选择图像进行标注
       2 annotation.set_capture_instructions();        // 显示帮助信息
       3 while (cam.get(CV_CAP_PROP_POS_AVI_RATIO) < 0.999999){    // 循环遍历每一帧
       4     Mat im, img; cam >> im; 
       5     annotation.image = im.clone();
       6     annotation.draw_instructions();
       7     imshow(annotation.wname, annotation.image);        // 显示当前帧
       8     int c = waitKey(0);        // 等待按键,q 退出,s 选择图像进行标注,其它任意键 下一帧
       9     if (c == 'q')break;
      10     else if (c == 's'){
      11         int idx = annotation.data.imnames.size(); char str[1024];
      12         if (idx < 10)sprintf(str, "00%d.png", idx);
      13         else if (idx < 100)sprintf(str, "0%d.png",idx);
      14         else               sprintf(str, "%d.png", idx);        // 文件名格式 三位整数.png
      15         imwrite(str, im);        // 保存该帧图像
      16         annotation.data.imnames.push_back(str);
      17         cam >> im;                // 显示下一帧
      18         imshow(annotation.wname, im);
      19     }
      20 }
      21 if (annotation.data.imnames.size() == 0)return 0;
      22 annotation.data.points.resize(annotation.data.imnames.size());
      

       

    • 运作效果: 
                                                                     
                                                                   
         亿万先生官方网站: 19 
           亿万先生官方网站: 20

  • 标明第叁幅图:第叁步首先将上一步中首先幅图彰显给用户,然后用户会在那幅图中精选需求跟踪的人脸特征地方。

    • 主要代码如下:

       1 // 标注第一幅图像
       2 setMouseCallback(annotation.wname, pp_MouseCallback, 0);
       3 annotation.set_pick_points_instructions();    // 显示帮助信息
       4 annotation.set_current_image(0);        // 选择第一幅图像
       5 annotation.draw_instructions();
       6 annotation.idx = 0;
       7 while (1){            // 在键入 q 之前,鼠标单击标注特征点
       8     annotation.draw_points();
       9     imshow(annotation.wname, annotation.image); 
      10     if (waitKey(0) == 'q')break;
      11 }
      12 if (annotation.data.points[0].size() == 0)return 0;
      13 annotation.replicate_annotations(0);    // 保存特征点位置信息
      
    • 运作效果(为检验代码,只接纳五个特征点):

      
        亿万先生官方网站: 21

 

  • 标明连通性:在这一步中,用户需采取将两组点连接起来,以建立人脸模型的连通性结构

    • 最主要代码如下:

       1 //标注连通性
       2 setMouseCallback(annotation.wname, pc_MouseCallback, 0);
       3 annotation.set_connectivity_instructions();    // 帮助信息
       4 annotation.set_current_image(0);
       5 annotation.draw_instructions();
       6 annotation.idx = 0;
       7 while (1){            // 在键入 q 之前,鼠标单击一组点建立连接
       8     annotation.draw_connections();
       9     imshow(annotation.wname, annotation.image); if (waitKey(0) == 'q')break;
      10 }
      11 save_ft(fname.c_str(), annotation.data);
      

       

    • 运转效果如下:

      
     亿万先生官方网站: 22

  •  标注对称性:这一步照旧使用上一步的图像,用户需选出左右对称的点。

    • 关键代码如下:

       1 //标注对称性
       2 setMouseCallback(annotation.wname, ps_MouseCallback, 0);
       3 annotation.initialise_symmetry(0);
       4 annotation.set_symmetry_instructions();
       5 annotation.set_current_image(0);
       6 annotation.draw_instructions();
       7 annotation.idx = 0; annotation.pidx = -1;
       8 while (1){            // 在键入 q 之前,鼠标单击特征点标注对称性
       9     annotation.draw_symmetry();
      10     imshow(annotation.wname, annotation.image); if (waitKey(0) == 'q')break;
      11 }
      12 save_ft(fname.c_str(), annotation.data);
      

       

    •  运维作效果果如下:

      
      亿万先生官方网站: 23

  •  标明剩下的图像:重复第一 步至第 4 步,移动特征点使特征点对应特征地点

    • 要害代码如下:

       1 //标注剩下的图像
       2 if (type != 2){
       3     setMouseCallback(annotation.wname, mv_MouseCallback, 0);
       4     annotation.set_move_points_instructions();        // 帮助信息
       5     annotation.idx = 1; annotation.pidx = -1;
       6     while (1){
       7         annotation.set_current_image(annotation.idx);
       8         annotation.draw_instructions();
       9         annotation.set_clean_image();        // 背景图
      10         annotation.draw_connections();        // 连线
      11         imshow(annotation.wname, annotation.image);
      12         int c = waitKey(0);        // q 退出,p 下一幅图像,o 上一幅图像
      13         if (c == 'q')break;
      14         else if (c == 'p'){ annotation.idx++; annotation.pidx = -1; }
      15         else if (c == 'o'){ annotation.idx--; annotation.pidx = -1; }
      16         if (annotation.idx < 0)annotation.idx = 0;
      17         if (annotation.idx >= int(annotation.data.imnames.size()))
      18             annotation.idx = annotation.data.imnames.size() - 1;
      19     }
      20 }
      21 save_ft(fname.c_str(), annotation.data);
      

       

    • 运作效果如下:

      
      亿万先生官方网站: 24

 

  该工具将标注数据存款和储蓄到
ann.yaml 中,如下:

     
                  亿万先生官方网站: 25

  2. 标号工具

   为了使生成的标号能被本章中的代码应用,可在 annotate.cpp 文件中找到贰个着力的标号工具。该工具将1个视屏流作为输入,这几个录制流能够来自文件或相机、使用该工具的进程有如下多个步骤:

  • 破获图像:第贰步是将图像流展现在荧屏上,用户按下
    S 键就可挑选图像进行标注。

    • 首要代码如下:

       1 //选择图像进行标注
       2 annotation.set_capture_instructions();        // 显示帮助信息
       3 while (cam.get(CV_CAP_PROP_POS_AVI_RATIO) < 0.999999){    // 循环遍历每一帧
       4     Mat im, img; cam >> im; 
       5     annotation.image = im.clone();
       6     annotation.draw_instructions();
       7     imshow(annotation.wname, annotation.image);        // 显示当前帧
       8     int c = waitKey(0);        // 等待按键,q 退出,s 选择图像进行标注,其它任意键 下一帧
       9     if (c == 'q')break;
      10     else if (c == 's'){
      11         int idx = annotation.data.imnames.size(); char str[1024];
      12         if (idx < 10)sprintf(str, "00%d.png", idx);
      13         else if (idx < 100)sprintf(str, "0%d.png",idx);
      14         else               sprintf(str, "%d.png", idx);        // 文件名格式 三位整数.png
      15         imwrite(str, im);        // 保存该帧图像
      16         annotation.data.imnames.push_back(str);
      17         cam >> im;                // 显示下一帧
      18         imshow(annotation.wname, im);
      19     }
      20 }
      21 if (annotation.data.imnames.size() == 0)return 0;
      22 annotation.data.points.resize(annotation.data.imnames.size());
      

       

    • 运作效果: 
                                                                     
                                                                   
         亿万先生官方网站: 26 
           亿万先生官方网站: 27

  • 标明第2幅图:第③步首先将上一步中首先幅图彰显给用户,然后用户会在那幅图中精选供给跟踪的面孔特征地方。

    • 重庆大学代码如下:

       1 // 标注第一幅图像
       2 setMouseCallback(annotation.wname, pp_MouseCallback, 0);
       3 annotation.set_pick_points_instructions();    // 显示帮助信息
       4 annotation.set_current_image(0);        // 选择第一幅图像
       5 annotation.draw_instructions();
       6 annotation.idx = 0;
       7 while (1){            // 在键入 q 之前,鼠标单击标注特征点
       8     annotation.draw_points();
       9     imshow(annotation.wname, annotation.image); 
      10     if (waitKey(0) == 'q')break;
      11 }
      12 if (annotation.data.points[0].size() == 0)return 0;
      13 annotation.replicate_annotations(0);    // 保存特征点位置信息
      
    • 运维效果(为检查代码,只选拔多少个特征点):

      
        亿万先生官方网站: 28

 

  • 标明连通性:在这一步中,用户需选取将两组点连接起来,以树立人脸模型的连通性结构

    • 首要代码如下:

       1 //标注连通性
       2 setMouseCallback(annotation.wname, pc_MouseCallback, 0);
       3 annotation.set_connectivity_instructions();    // 帮助信息
       4 annotation.set_current_image(0);
       5 annotation.draw_instructions();
       6 annotation.idx = 0;
       7 while (1){            // 在键入 q 之前,鼠标单击一组点建立连接
       8     annotation.draw_connections();
       9     imshow(annotation.wname, annotation.image); if (waitKey(0) == 'q')break;
      10 }
      11 save_ft(fname.c_str(), annotation.data);
      

       

    • 运维效果如下:

      
     亿万先生官方网站: 29

  •  标注对称性:这一步照旧采纳上一步的图像,用户需选出左右对称的点。

    • 最首要代码如下:

       1 //标注对称性
       2 setMouseCallback(annotation.wname, ps_MouseCallback, 0);
       3 annotation.initialise_symmetry(0);
       4 annotation.set_symmetry_instructions();
       5 annotation.set_current_image(0);
       6 annotation.draw_instructions();
       7 annotation.idx = 0; annotation.pidx = -1;
       8 while (1){            // 在键入 q 之前,鼠标单击特征点标注对称性
       9     annotation.draw_symmetry();
      10     imshow(annotation.wname, annotation.image); if (waitKey(0) == 'q')break;
      11 }
      12 save_ft(fname.c_str(), annotation.data);
      

       

    •  运营效果如下:

      
      亿万先生官方网站: 30

  • 亿万先生官方网站:, 标明剩下的图像:重复第二 步至第 4 步,移动特征点使特征点对应特征地方

    • 关键代码如下:

       1 //标注剩下的图像
       2 if (type != 2){
       3     setMouseCallback(annotation.wname, mv_MouseCallback, 0);
       4     annotation.set_move_points_instructions();        // 帮助信息
       5     annotation.idx = 1; annotation.pidx = -1;
       6     while (1){
       7         annotation.set_current_image(annotation.idx);
       8         annotation.draw_instructions();
       9         annotation.set_clean_image();        // 背景图
      10         annotation.draw_connections();        // 连线
      11         imshow(annotation.wname, annotation.image);
      12         int c = waitKey(0);        // q 退出,p 下一幅图像,o 上一幅图像
      13         if (c == 'q')break;
      14         else if (c == 'p'){ annotation.idx++; annotation.pidx = -1; }
      15         else if (c == 'o'){ annotation.idx--; annotation.pidx = -1; }
      16         if (annotation.idx < 0)annotation.idx = 0;
      17         if (annotation.idx >= int(annotation.data.imnames.size()))
      18             annotation.idx = annotation.data.imnames.size() - 1;
      19     }
      20 }
      21 save_ft(fname.c_str(), annotation.data);
      

       

    • 运转效果如下:

      
      亿万先生官方网站: 31

 

  该工具将标注数据存储到
ann.yaml 中,如下:

     
                  亿万先生官方网站: 32

   3. 预备标注数据( MUCT 数据集)

  为了让本章的标注工作变得自在一些,可应用公开的
MUCT 数据集。这一个数据集由
3755 张人脸图像构成,每张人脸有7捌个点作为标志。数据集的图像是在不一致光照条件和尾部姿势下拍戏的人,他们来自区别年龄和种族。

  该数量集只包涵了标注点,供给自定义连通性和对称性。标注连通性和对称性之后效果如下图左,标注数据储存在 annotations.yaml 中,如下图右:

   
 亿万先生官方网站: 33   
  亿万先生官方网站: 34

  

  visualize_annotations.cpp 完毕对数据集可视化操作,关键代码如下:

亿万先生官方网站: 35亿万先生官方网站: 36

 1 cout << "n images: " << data.imnames.size() << endl
 2     << "n points: " << data.symmetry.size() << endl
 3     << "n connections: " << data.connections.size() << endl;
 4 // 可视化标注数据
 5 namedWindow("Annotations");
 6 int index = 0; bool flipped = false;
 7 while(1){
 8 Mat image;
 9 if(flipped)image = data.get_image(index,3);
10 else image = data.get_image(index,2);            // 背景图片
11 data.draw_connect(image,index,flipped);            // 连通
12 data.draw_sym(image,index,flipped);                // 对称
13 imshow("Annotations",image);
14 int c = waitKey(0);            // q 退出,p 下一张,o 上一张,f 翻转
15 if(c == 'q')break;
16 else if(c == 'p')index++;
17 else if(c == 'o')index--;
18 else if(c == 'f')flipped = !flipped;
19 if(index < 0)index = 0;
20 else if(index >= int(data.imnames.size()))index = data.imnames.size()-1;
21 }

可视化数据

  运营效果如下:

     
 亿万先生官方网站: 37 
  亿万先生官方网站: 38   
 亿万先生官方网站: 39

 

 

 

   3. 预备标注数据( MUCT 数据集)

  为了让本章的标注工作变得轻松一些,可应用公开的
MUCT 数据集。那几个数额集由
3755 张人脸图像构成,每张人脸有柒十七个点作为标志。数据集的图像是在不一致光照条件和底部姿势下拍录的人,他们来自分歧年龄和种族。

  该数据集只包罗了标注点,供给自定义连通性和对称性。标注连通性和对称性之后效果如下图左,标注数据储存在 annotations.yaml 中,如下图右:

   
 亿万先生官方网站: 40   
  亿万先生官方网站: 41

  

  visualize_annotations.cpp 达成对数据集可视化操作,关键代码如下:

亿万先生官方网站: 42亿万先生官方网站: 43

 1 cout << "n images: " << data.imnames.size() << endl
 2     << "n points: " << data.symmetry.size() << endl
 3     << "n connections: " << data.connections.size() << endl;
 4 // 可视化标注数据
 5 namedWindow("Annotations");
 6 int index = 0; bool flipped = false;
 7 while(1){
 8 Mat image;
 9 if(flipped)image = data.get_image(index,3);
10 else image = data.get_image(index,2);            // 背景图片
11 data.draw_connect(image,index,flipped);            // 连通
12 data.draw_sym(image,index,flipped);                // 对称
13 imshow("Annotations",image);
14 int c = waitKey(0);            // q 退出,p 下一张,o 上一张,f 翻转
15 if(c == 'q')break;
16 else if(c == 'p')index++;
17 else if(c == 'o')index--;
18 else if(c == 'f')flipped = !flipped;
19 if(index < 0)index = 0;
20 else if(index >= int(data.imnames.size()))index = data.imnames.size()-1;
21 }

可视化数据

  运营效果如下:

     
 亿万先生官方网站: 44 
  亿万先生官方网站: 45   
 亿万先生官方网站: 46

 

 

 

相关文章

网站地图xml地图